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Nomenclature

• AR: Aspect Ratio

• b: Wingspan (m)

• c: Mean Chord (m)

• cd: Drag Coefficient of a 2D Wing

• CD: Drag Coefficient of a Finite Wing

• CD, i: Induced drag coefficient (wing only)

• CD, 0: Parasitic Drag Coefficient

• cl: Lift coefficient of a 2D Wing

• CL: Lift coefficient of a Finite Wing

• cl,α: 2D Lift Slope

• CL,α: Lift Slope of a Finite Wing

• D: Drag Force (N)

• Di: Induced Drag Force (wing only) (N)

• ev: Oswald Efficiency

• K: Fitting Coefficient, equal to 1
πevAR

• L: Lifting Force (N)

• q: Dynamic Pressure, equal to 1
2ρU

2 N
m2

• S: Wing Planform Area (m2)

• Sw: Wetted Surface Area (m2)

• U : Flight speed (ms )

• α: Angle of Attack (AOA) (◦)

• γ: Glide slope (◦)

• ν: Kinematic Viscosity of air at sea level, equal
to 1.5× 10−5(m

2

s )
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1 Introduction

1.1 The Basic Equations of Flight Mechanics
Aerodynamics is a remarkable field, revealing the intricate patterns in which solids move through the air. For
all aircraft, including a glider like Checkmate, even the most basic equations can offer a powerful way to predict
and model flight. In gliding flight, the lift and drag forces create 2 clear sections which can be used to derive
these basic, yet governing equations.

Understanding the Basic Equations: Drag and Lift
Prior to defining equations with tangible results, there are several basic equations of flight mechanics which must
be defined. The section below will be dedicated to defining such that.

1. Lift

L = qSCL (1)

The lift equation shows a simple relationship between the coefficient of lift, the dynamic pressure, the wing area,
and the lifting force. CL, the finite lift coefficient, is determined through a calculation using cl, the 2D section
lift coefficient, and the aspect ratio, AR.

It is extremely difficult to manually calculate the cl of an airfoil. An accurate way to determine Checkmate’s
cl is by identifying a similarly-shaped NACA airfoil, based on maximum camber, distance of maximum camber
and thickness, all as percent of the chord. Then it is simple to evaluate the already simulated polars. NACA
6412 is the closest airfoil to Checkmate’s airfoil. The α0L is determined by identifying the α when cl = 0 on the
pre-simulated NACA 6412 cl versus α polar.

CL,α =
2π(AR)

(AR) + 2
(2)

CL,α describes the rate of change in CL based on α in radians. Considering that CL = 0 when cl = 0, and that
CL increases linearly with an increase in α, the CL at the set angle of attack of 2◦can be found.

CL =
dCL

dα
(α0L − α) (3)

2. Drag

The total drag, D, of the aircraft consists of the aircraft parasitic drag, D0, and the lift-induced drag, Di.

D = D0 +Di (4)

The parasitic drag D0 consists of Df , the friction drag from non-lifting surfaces of the plane, and Dpro, the
profile drag of the wing.

D0 = Df +Dpro (5)

Df accounts for friction acting on the fuselage, horizontal stabilizer, and vertical stabilizer. Each section has a
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designated friction coefficient Cf , and a wetted surface area Sw.

Cf is determined using the Reynolds Number based on length (Rel), and the (Rel) flow-wise length of the
surface (l).

Rel =
ul

ν
(6)

Cf =
1.328√
Rel

(7)

Cf and Sw can be used to find Df .

Df = q(Sw,fusCf,fus + Sw,V SCf,V S + Sw,HSCf,HS) (8)

Next, the profile drag Dpro is calculated using the minimum drag coefficient of the airfoil (cd,min), dynamic
pressure q, and wing section area S. cd,min is found using the airfoil geometry of NACA 6412 at Re = 5× 104.
Using cd,min and S, Dpro can be determined.

Dpro = cd,minqS (9)

The last component of drag is the induced drag, Di.

Di = CD,iqS (10)

It can also be found that:
CDi

= KC2
L (11)

K is a constant consisting of the aspect ration AR and the Oswald efficiency number ev.

K =
1

πevAR
(12)

From a derivation of Equation 1, it can be demonstrated that

C2
L =

L2

(qS)2
(13)

If the plane is in steady, level flight, (L = W ), substituting Equations 11, 12, and 13 into Equation 10 brings
the following result:

Di =
KW 2

qS
(14)

Gliding Flight
From the components of force affecting the movement of the aircraft, the specific type of flight of Checkmate
can be defined: gliding flight. In ideal gliding flight, the aircraft has no thrust, and all forces are in equilibrium.
In the case of this report, Checkmate is assumed to glide down at a constant airspeed and sink rate.
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1.2 Predictions and Measurable Quantities
To measure and predict the flight of Checkmate, the following quantities can be utilized:

• L: Lifting forces on the glider

• D: Drag forces on the glider

• W: Weight of the glider

• γ: Angle from horizontal line to direction of airspeed

Figure 1: Free Body Diagram of a Gliding Plane

As mentioned in Section 1.1, the horizontal and vertical forces remain in equilibrium during flight. The following
force equations can be formed using the forces in Figure 1:

L = Wcos(γ) (15)

D = Wsin(γ) (16)

Equation 15 and 16 can now be used to derive the maximum range of Checkmate.

D

L
=

sin(γ)

cos(γ)
(17)

Therefore,

tan(γ) =
1
L
D

(18)

From Equation 18, it can be seen that ( L
D )max,the highest achievable ratio between lift and drag, occurs at γmin.

Additionally, with the assumptions of gliding flight mentioned in Section 1.1, the following can be found:
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tan(γ) =
h

R
(19)

Combining Equations 18 and 19, the following relationship between the L
D ratio, height, and range can be found.

R

h
=

L

D
(20)

From Equation 20, the equation for maximum range can be constructed

Rmax = h

(
L

D

)
max

(21)

The objective of the predictions is to estimate Rmax and the flight speed U at which Rmax occurs. With the
derivations from Section 1.1 and Section 1.2, and with known constant parameters, L

D at a certain flight speed
U can be calculated.

For simplicity of calculation, cos(γ) ≃ 1 at low γ. Therefore:

L = W (22)

Next, drag D needs to be calculated in terms of U. D consists of the two components specified in Section 1.1,
D0 and Di. As shown in Equation 4, D0 consists of Df and Dpro. The relationship between Df and U can be
found with Equation 8.

Df∼q∼U2 (23)

The relationship between Dpro and U can be found with Equation 8.

Dpro∼q∼U2 (24)

The relationship between D0 and U can be seen to be:

D0∼U2 + U2∼U2 (25)

The relationship between Di and U can be determined with Equation 14:

Di∼
1

q
∼ 1

U2
(26)

Then,
(
L
D

)
max

can be located over the flight speed range. Since it can be deduced that R is directly propor-
tional to L

D with constant launch height h, Rmax can be found with
(
L
D

)
max

. With all other parameters of drag
being held constant except for airspeed U , and since L = W , L

D can be plotted over various air speeds to find(
L
D

)
max

.With a known
(
L
D

)
max

and launch height h, Rmax can be predicted at a specified airspeed.

During flight test, the predicted maximum range and airspeed are tested. The explanation of the testing
procedure is continued in Section 2.
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2 Materials and Methods

2.1 Glider

Figure 2: CAD Model of Checkmate, Drawn From Online Plans

Figure 3: Annotated Side View of Checkmate (dimensions in cm)

Figure 4: Annotated Front View of Checkmate (dimensions in cm)
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Figure 5: Annotated Top View of Checkmate (dimensions in cm)

Figure 6: Geometrical Comparison Between NACA6412 (Above) and Airfoil Used (Below)

Measurement Value
Tip to tip span (b) 1.27m
Planform Area (S) 0.296m2

MAC (c) 0.231m
AR 5.5

Maximum Thickness 12%
Maximum Camber 6%

Leading Edge to Max Camber 37%
Airfoil Used NACA 6412

Table 1: Checkmate’s Dimensions
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2.2 Testing Procedures
Checkmate took flight for the first time just after 6am. Flying in the early morning minimized winds, which
tend to increase when the sun is out. A special launching apparatus was used to launch the gliders at constant
height (measured to be 1.58m off the ground) and at precise speeds. Following each one of Checkmate’s several
flights, the speed, horizontal distance from the launch point, X, and the horizontal distance perpendicular to
the launch direction, Y were all recorded. The total length of each flight path, R, can be estimated using the√
X2 + Y 2, assuming that the flight path was a straight line.

Term Definition Evaluation Method Value
X Measured Horizontal Distance From Launch Point Surveyor’s Tape Measure Varies
Y Measured Horizontal Distance Perpendicular to Launch Direction Surveyor’s Tape Measure Varies
h Launch Rail Height Measuring Tape 1.58 m
R Range (Total Length of Flight Path) R=

√
X2 + Y 2 Varies

m Mass of Glider Scale 0.550 kg
T Atmospheric Temperature Cellphone Weather App 288 K
U0 Launch Speed Gauge on Launcher Varies
p Barometric Pressure Cellphone Pressure Sensor 1.02(105) N

m2

ρ Air Density p
RT , where R is ideal gas const. 1.23 kg

m3

t Flight Duration R
U0

Varies

Table 2: Quantities Found in Testing

3 Results

3.1 Reynolds Number and Drag Estimates

U = 5m
s , ρ = 1.23 kg

m3 , ν = 1.5× 10−5m2

s , Assuming flow is laminar as Re < 5× 105

Component Length (m) Rel =
Ul
v Cf,Component =

1.328√
Rel

Sw,Component(m2)

Fuselage, fus 0.883 2.94× 105 2.45× 10−3 0.0830
Horizontal Stabilizer, HS 0.127 4.23× 104 6.46× 10−3 0.0788
Vertical Stabilizer, VS 0.159 5.30× 104 5.77× 10−3 0.0262

Table 3: Values of Re, Cf , and Sw for Non-Lifting Surfaces

The drag force equation is comprised of the surface friction of the non-lifting components:

Df = q(Cf,fusSw,fus + Cf,HSSw,HS + Cf,V SSw,V S)

Df =
1

2
ρU2S(Cf,fusSw,fus + Cf,HSSw,HS + Cf,V SSw,V S)

Df = U2 × 0.182
kg

m
× 0.000863
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Df = U2(0.000157)
kg

m

3.2 Range versus Speed - Theory and Tests
Prior to flight day, the theoretical model predicted the range Checkmate would fly over varying flight speeds,
indicated by the red curve below. The blue stars indicate the experimental values, plotted over the predicted
curve to show the clear discrepancies.

Figure 7: Predicted and Experimental Range of Checkmate versus U

It can be seen that the experimental values seem to have a linear increase in R with increase in U , with no
apparent peak value. The testing resulted in an average range R of 14.5m with a standard deviation of 2.62m.
The average airspeed is 7.04 m/s and the standard deviation of airspeed is 1.54 m/s. It appears as if Checkmate
has not been flown to the U of Rmax.

10



4 Discussion

4.1 Comparison of Theory and Experiment
Assuming that the glider was gliding, there are several factors which would have led to such an erroneous pre-
diction.

Checkmate would arrive at a higher maximum range at a higher speed. The curve of best fit is generated
based on the tendencies of the theoretical curve.

From the derived relationships between each drag component and airspeed, the following can be concluded
with Equations 4, 25, and 26:

D∼U2 +
1

U2
(27)

Next considering that R = h( L
D ) with constant h, the theoretical equation can be written in the same form

R =
1

(a)U2 + b
U2

(28)

where:

• a =
ρ(Sw,Fus×CF,Fus+Sw,HS×CF,HS+Sw,V S×CF,V S+S(CD,min))

2hmg

• b = 2Kmg
ρSh

ρ, S, launch height, and all SW values can be assumed to be constant.
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Figure 8: Predicted and Experimental Range versus U Incorporating a Fit Line

Equation 28 can be used to generate a fit line from the experimental data. The best fit equation calculated from
the data points is R = 1

(2.68×105)U2+ 7.58×105

U2

.

Many assumptions and predictions are made when calculating the line of best fit. The new curve is a ten-
tative prediction, and is unlikely to be accurate. Instead it is used to demonstrate that the airspeed of maxi-
mum range was not reached during testing, and Rmax is placed at a higher U than the originally predicted value.
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To identify the parameter(s) in the theoretical model that cause error, several constants were altered to observe
the trend in the theoretical curve. The constants selected were CD,min, because it was calculated from a low
Reynolds number which could cause inaccuracies in predicted aerodynamic values, and m, because the scales
used had a large margin of error.

Figure 9: R versus U , Theory and Edited Theory, Doubled CD,min

Doubling cd,min results in a proportional decrease of Rmax by about 1/3 and shifting back by about 1/7.
The real cd,min could differ from the value taken from airfoiltools.com, as airfoiltools.com utilizes X-Foil to
simulate the polars. The X-Foil software simulates and provides data points for inviscid flight at high Reynolds
numbers. However, the simulated values for NACA6412 was at a low Reynolds number of 50,000. Therefore,
the values used for CD and CL inputted into the theoretical prediction could be different from the real values
as viscid effects could occur.
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Figure 10: R versus U , Theory and Edited Theory, Doubled m

Doubling glider mass m results in a proportional shifting forward of the U value of Rmax by about 2/5.
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Figure 11: R versus U , Theory and Edited Theory, Doubled Cf

Doubling all Cf values results in a decrease and shifting back of Rmax with a much smaller magnitude than
that of previous changes. This increase in Cf could create a similar effect to accounting for skin friction
drag. However, the small change implies that Cf does not significantly affect gliding performance, regardless of
differences between theoretical and experimental values.
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Figure 12: R versus U , Experimental Fit Line versus Theory and Edited Theory

In order for the theoretical graph to more closely resemble the experimental best fit graph, the weight must be
increased slightly and the value of CD,min must be decreased.

However, for the theoretical graph to be near the best fit graph in value, CD,min must be decreased by a
factor greater than 103. This suggests that the best fit curve cannot be reliably obtained from the data. The
curve may have been more reliable if the data points included a clear peak value.
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4.2 Wing Loading, W/S
The table below shows Checkmate’s wing loading value, alongside several other flying devices.

Flying Device Weight, W (N) Wing Area, S (m2) Wing Loading ( N
m2 )

Checkmate Glider 8.82 0.296 29.8
Barn Swallow 0.170 0.012 14.2
Barn Owl 5.00 0.168 29.8
Black Vulture 21.0 0.330 63.6
Icaré 2 (solar-powered airplane) 3,500 21 167
Airbus A380 5,600,000 845 6,630

Table 4: Wing Loading Comparison

Figure 13: Predicted Weight versus Wing Loading Values

The line on the log scale graph is the predicted variation of weight vs wing loading. Checkmate, denoted above
by the star, falls under the expected line for its weight, and therefore has a lower wing loading then anticipated.
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There is a short derivation which creates a simple relationship between flight speed and wing loading. Starting
with a variation of Equation 1:

L =
1

2
ρU2CL

In gliding flight, L ≈ W :

U =

√
2W

ρSCL

W,ρ, and CL are all constant in gliding flight, therefore:

U ∼
√

W

S
∼

√
Wing Loading

Checkmate features an unusually low wing loading, notably falling below the expected value for flying devices
with similar weights. This characteristic enhances Checkmate’s ability to fly at low air speeds when compared
to those similarly weighted .
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4.3 (L/D)max

4.3.1 Derivation and Calculation

The following equations will be used for the derivation.

L

D
=

CL

CD

CD,i = KC2
L

CD = CD,o + CD,i

At (L/D)max the condition below is true:
CD,o = CD,i

∴ CD = 2CD,o

Solving for (L/D)max

CD,i = CD,o = KC2
L

CL =

√
CD,o

K(
L

D

)
max

=

√
CD,o

K

2CD,o(
L

D

)
max

=
1

2
√

KCD,o

The (L/D)max value occurs at the when D is at its minimum, where it is equal to Do.

Equation 5 states:
D0 = Df +Dpro

Equation 8 is defined in section 3.1:

Df = U2(0.000157)
kg

m

Equation 11 states:
Dpro = cd,minqS

The cd,min discussed in section 1.1 turns out to be 0.055 at Re = 5× 104.

Dpro = cd,min(
1

2
ρU2S)

Dpro = 0.055× U2 × .5× 1.23
kg

m3
× 0.296m2
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Dpro = U2(0.01)
kg

m

Combining the drags yields:

D0 = U2(0.000157) + U2(0.01) = U2(0.0102)
kg

m

As seen in the theoretical curves from part 4, ( L
D )max,theory occurs at U ≈ 7.5m

s . Plugging U in yields:

Do = 0.587N

Do = qSCD,o

CD,o =
Do

qS
=

0.587

(34.6)(0.296)
= 0.0573

To calculate K the aspect ratio and Oswald efficiency must be defined. AR is defined in Table 1 and ev is defined
by taking an approximation based on Appendix A of Scholz’s “Estimating the Oswald Factor From Basic Aircraft
Geometrical Parameters” (Source: Scholz). The selected ev of 0.75. Using these values:

K =
1

πARev
=

1

π(5.5)(0.75)
= 0.0772

By plugging both values into the equation:(
L

D

)
max,theory

=
1

2
√
KCD,o

=
1

2
√
(0.0772)(0.0573)

= 7.52

The experimental (L/D)max is found below:

R = h

(
L

D

)
(
L

D

)
max,exp

=
Rmax

h
=

34.0

1.58
= 21.5

4.3.2 Comparison

21.5 > 7.50

(
L

D

)
max,exp

>

(
L

D

)
max,theory
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4.4 Uγ

4.4.1 Prediction

The following equation describes the glide angle:

tan(γ) =
h

R

tan(γ) =
h

h( L
D )

tan(γ) =
1
L
D

∴ γmin at

(
L

D

)
max

Using 4.3 and the lift equation the Uγ is derived:

U2 =
2W

ρSCL

CL =

√
CD,o

K

U2
γ =

2W

ρS
√

CD,o

K

Uγ =

√√√√ 2W

ρS
√

CD,o

K

By plugging in values, Uγ is found:

Uγ,theory =

√√√√ 2W

ρS
√

CD,o

K

=

√√√√ 2(8.83)

(1.23)(0.296)
√

(0.0573)
(0.0772)

= 7.50m/s

4.4.2 Comparison

9.7
m

s
> 7.5

m

s

Uγ,exp > Uγ,theory
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4.5 CL at Dmin

4.5.1 Calculation

Starting with Equation 1:

W = qSCL =
1

2
ρU2SCL

Using the Uγ value found above and solving for CL

CL,Dmin
=

2W

ρSU2
γ

Using Equation 3 in Section 1.1, the theoretical CL value is calculated below:

CL,α =
2π(AR)

(AR) + 2
=

2π(5.5)

5.5 + 2
= 4.6/rad

This formula demonstrates a 4.6 increase in CL per radian increase in α

m =
4.6

1rad
× πrad

180◦
= 0.08/degree

This is the slope for the CL(α) plot as α is measured in degrees.

Figure 14: Airfoil Polars for NACA6412 at Re = 5× 104 (Source: Airfoil Tools)
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From plot: cl = 0 at α = −2◦

y1 − y2 = m(x1 − x2)

0− CL =
0.08

degree
(−2◦ − 2◦)

CL = 0.320

Using the values above CL,Dmin
is calculated below:

CL,Dmin
=

2W

ρSU2
γ

=
2(8.83N)

(1.23 kg
m3 )(0.296m2)(7.5m

s )
2
= 0.862

4.5.2 Comparison

0.862 > 0.320

CL,Dmin > CL

5 Summary
The glider did not perform as predicted. Section 4.1 discussed potential changes that would shift the theoreti-
cal curve to a higher U, closer to the experimental values. One of the parameters which did so was drastically
decreasing the Cd,min value. However, the new value was unrealistically small, at around 1/1000 its original value.

Section 4.2 demonstrated the wing loading predictions through Figure 14. This figure highlights Checkmate’s
apparent over-performance at lower air speeds.

In Section 4.3 the theoretical and experimental (L/D)max are vastly different from each other. The experi-
mental values of R never peak, creating significant uncertainty. The experimental value of (L/D)max = 21.5 is
at best a minimum, meaning the difference between theory and experiment can only increase. The maximum
value of (L/D)max also govern the values Uγ and CL,Dmin

, creating even more uncertainty. Already, the two
values significantly vary from their theoretical counterparts, as seen in sections 4.4 and 4.5.

The reason for a lack of peak is due to the limitations of the equipment used as the rail launch system did not
launch past 10 m/s. Regardless, the theoretical predictions are still vastly different from the experiment. A
possible source of the error could be due to the limitations of X-foil, as explained in Section 4.1.

When predicting the performance of a glider, various assumptions were made. The principle assumption made
was that the glider glides and descends at a constant sink rate and air speed. Empirically, gliding is shown using
Equation 22.
This assumption, however, does not hold true as a stall pattern was observed throughout the experiment. Stalls
occur when the angle of attack of an airfoil exceeds the maximum lift value and causes the glider to fall as shown
below:
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Figure 15: Checkmate Glider Stalling on Glider Day

During Glider Day, changes were made to the glider to have a better performance, one of the changes was to
increase the angle of attack of the wing. At higher speeds the increased angle of attack and CL caused the plane
to pitch up to a greater height and stall. The increase in height indicates that L > W .Therefore, the assumption
of gliding flight is not met during the experimental tests as the forces are not in equilibrium, thus having a
inconstant airspeed and sink rate. The model prediction does not account for these changes in flight and thus
represents an inaccurate depiction.

Beyond the wing angle of attack, other unpredicted changes were made to the glider before launch. These
changes were made to improve the performance of the glider based on the characteristics of the glider. One
change to the glider was the adjustment of the center of mass by decreasing the amount of putty in the nose of
the plane. Although the center of mass was not a factor in the prediction, this changed the mass of the glider.
However, this change was minimal and does not have a vast effect on the predicted performance of the glider.
Lastly, the glider tended to roll to the left, therefore, the trim was changed to negate the roll for the glider to
maintain a steady flight. Overall, the changes made to the glider were not represented in the model thus the
experimental results did not match the predictions.

The purpose of this report is to compare the predicted performance with the true performance of the glider.
Various factors were tested to compare the performances including graphing data, manipulating equations and
comparing key values. Lastly, by discussing the causes for the changes seen through these factors, the conclusion
is clear that the glider did not match the predicted performance.
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